If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+8x-96=0
a = 3; b = 8; c = -96;
Δ = b2-4ac
Δ = 82-4·3·(-96)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{19}}{2*3}=\frac{-8-8\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{19}}{2*3}=\frac{-8+8\sqrt{19}}{6} $
| 8x+5-4x=24 | | 50=50pp= | | 7^x=100 | | 6+6(2y-1)=3+12y | | 2.9=y+6.3 | | 6{x-7}=65 | | 40=5rr= | | -5(m-7)=60 | | n/2+5=152 | | 6(x+18=9x | | 6x-4+3x+4)=180 | | 5(x)=33 | | 4n-5=5 | | -35x+6=27 | | k+(-15)=-24 | | 2/3(2x-3x)=4/3x | | -4(9y+5)=40-6y | | 48=12^b | | c/2+10=8 | | 14x=-224 | | 4(n-2)=3(n+4) | | 1y/1y=1 | | -2x^2+9=-63 | | z/2+1=92 | | 360=180+(2x)+x | | 12.5+x=29 | | 2(y+10)=140 | | n/5-4=115 | | 7x-47=-26 | | b-(-18)=28 | | 0=x2-2x-24 | | 1/5x-4=-10 |